
  
Abstract— In this article a new control strategy is proposed: 
Additive Internal Model Control. This control strategy is 
based in two existing strategies: Additive Feedforward 
Control and Internal Model Control. 
Internal Model Control is composed of an inverse model 
connected in series with the plant and a forward model 
connected in parallel with the plant, this structure allows the 
error feedback to reflect the effect of disturbance and plant 
mismodelling resulting in a robust control loop.   
Additive Feedforward Control consists of introducing an extra 
controller into an existing loop with the purpose of improving 
the quality of the control action. 
This new controller introduced is a feedforward controller, 
which performs better than the existing controller. In the 
proposed strategy, Additive Internal Model Control, the new 
controller added to the control loop is an Internal Model 
Controller. 
The new control strategy is tested in a temperature control 
loop of a reduced scale prototype kiln resulting in improved 
performance compared to Additive Feedforward Control.  
The models used to implement both the control strategies are 
built with feedforward neural networks.  
 
Index Terms— Feedforward Neural Networks, Additive 
Feedforward Control, Additive Internal Model Control, 
Internal Model Control and Measurement Noise. 
 

I. INTRODUCTION 

In this article a new control strategy is proposed: Additive 
Internal Model Control. This control strategy is based in the 
principle of Additive Feedforward Control (AFC): 
improving an existing control loop. 
AFC can lead to the removal of the existing controller 
leaving a Direct Inverse Control loop. This kind of loop is 
the simplest control solution but is unable to guarantee null 
steady state error.  
To guarantee that the loop, after the removal of the existing 
controller, is capable of a better performance, this new 
control strategy is based on adding one Internal Model 
Controller. This will improve both steady state and 
transitory performance.  
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To achieve this goal, instead of adding a simple inverse 
model to the existing loop as in AFC, a complete IMC loop 
is added.  
 

II. ADDITIVE FEEDFORWARD CONTROL 

Additive Feedforward Control is a known strategy [1], [2], 
[3] whose principle is quite simple: add to an existing (but 
not satisfactory functioning) controller an additional inverse 
process controller. The existing controller might be or not a 
feedback controller. The principle of AFC can be illustrated 
with the block diagram of figure 1. 
The AFC strategy offers the following important 
advantages [1]:  

• Data collecting can be done using the existing 
closed loop: avoiding plant stopping for data 
collection and allowing the access to good quality 
data.  

• There is no need for opening the existing control 
loop neither during training nor during the 
introduction of the additive controller. 

 

Plant

Inverse
Model

u(k)r(k+1)

y(k+1)Existing
Controller

+
+

+

-

 
 
Fig. 1. Additive Feed Forward Control block diagram. 

 
Taking into account the mentioned advantages, AFC can 
also allow the removal of the existing controller.  
If the existing controller is removed, the remaining loop 
will be a simple direct inverse controller that though better 
than the existing controller doesn’t perform as good as a 
feedback controller [3]. 
With this perspective, the proposal of the present work is to 
use the idea of AFC, keeping its advantages while 
improving the quality of the control action, by replacing the 
feedforward controller to be introduced by a feedback 
controller. The feedback controller chosen is an Internal 
Model Controller (IMC). 
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A. Mixed Feedforward and Feedback in AFC 
Controllers.  

In [1] a distinction is made between the pure and mixed 
additive feedforward control. The adjective pure is used 
when AFC is implemented using a model, which does not 
receive information from the plant (see block diagram in 
figure 2), by opposition the mixed adjective is applied when 
the model used receives feedback information from the 
output of the plant. 
The AFC implemented in the present work is of the mixed 
feedforward and feedback control type (see block diagram 
in figure 3), as the one presented in [1].  
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Fig. 2. Pure Additive Feed Forward Control block 
diagram. Example for a second order inverse model. 
 
 

 
Fig. 3. Mixed Additive Feed Forward Control block 
diagram. Example for a second order inverse model. 
 

III. INTERNAL MODEL CONTROL 

Internal Model Control is a structure composed of an 
inverse and a direct model of the plant that allows the error 
feedback to reflect the effect of disturbance and plant 
mismodelling.  
It can be shown [3] that for this structure a good match 
between forward and inverse models is enough to have 
good control and that disturbance’s influence is also 
reduced. 
The basic IMC structure can be seen in figure 4. 
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Fig. 4.  Structure for Internal Model Control.  
 

A. Adapting IMC to use Neural Models. 

The basic IMC structure needs some refinements to work 
properly with neural networks [4], while the AFC can be 
used in a straightforward way. 
The good match between forward and inverse models, 
referred above translates to having the forward model 
output’s fedback to the input of the inverse and direct 
model instead of the outputs of the plant. This means that 
the inverse model will implement the following equation:  
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Where ny is the number of previous output samples used, nu 
is number of previous control signal samples used and td is 
the time delay of the system. The block diagram of the 
resulting control loop can be seen in figure 6. 
This matching between the models would normally point 
out to specialized training, though in the present work the 
better results where achieved with normal training as 
depicted in figure 5. 
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Fig. 5.  Structure for training the inverse model.  

Plant

Inverse
Model

u(k)r(k+1)

y(k+1)Existing
Controller

+
+

+

-

yr(k+1)

y(k)

y(k-1)

um(k)

z-1

z-1

u(k-1)
z-1



 

IV. ADDITIVE INTERNAL MODEL CONTROL 

In the two previous sections Additive Feedforward Control 
and Internal Model Control have been shortly presented.    
In the present section Additive Internal Model Control will 
be introduced. 
Additive Feedforward Control introduces in the control 
loop an additional controller in the form of an inverse 
model performing a simple correction of the poor 
performance of the existing controller. This inverse model 
introduced in the loop along with the plant completes a 
Direct Inverse Control strategy.  
The DIC strategy usually under performs feedback 
strategies [2][3] and this type of control could in principle 
be replaced by a feedback controller.  
 

 
Figure 6- Internal Model Control structure with detail of the 
implementation of inverse and direct model for second 
order models. 
 
This analysis led to conjugation of IMC and AFC resulting 
in the block diagram of figure 7, which was named 
Additive Internal Model Control because of the two loops 
which were used to create it. 
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Fig. 7.  Structure for Additive Internal Model Control.  
 
The existing controller and the plant constitute the initial 
loop while the inverse model, direct model and plant 
constitute an IMC loop. Both are feedback loops but their 
feedback signal is different. The initial loop’s input is the 
error between output and reference and the IMC’s feedback 
is the error between the plant and the direct model. 

This structure keeps the advantages of AFC and makes it 
safer to remove the existing controller since the remaining 
loop will still be a feedback loop. 
 

V. THE PLANT 

The plant used to test AIMC is a reduced scale prototype 
kiln. The complete system is composed of a kiln, 
electronics for signal conditioning, power electronics 
module, cooling system and a Data Logger from Hewlett 
Packard HP34970A to interface with a Personal Computer 
(PC). 
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Fig. 8.  Schematic view of the kiln. 
 
Details about the kiln can be seen in figure 8 and the 
connections between the modules can be seen in figure 9. 
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Fig. 9.  Block diagram of the system. 
 
The kiln is a cylindrical metal box of steal which is 
completely closed, filled with an isolating material up to the 
kiln chamber. The kiln chamber is limited by the metallic 
terminators and o-rings.  
The heating element is an electrical resistor that is driven by 
the power module. 
The Data Logger acts as an interface to the PC where the 
controller is implemented using MATLAB. Through the 
Data Logger bi-directional information is passed: control 
signal in real-time supplied by the controller and 
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temperature data for the controller. The temperature data is 
obtained using a thermocouple. 
The power module receives a voltage signal from the 
controller implemented in the PC, which ranges from 0 to 
4.095V and converts this signal in a power signal ranging 
from 0 to 220V. 
The signal conversion is implemented using a sawtooth 
wave generated by a set of three modules: zero-crossing 
detector, binary 8 bit counter and D/A converter. The 
sawtooth signal is then compared with the input signal 
generating a PWM type signal.  
The PWM signal is applied to a power amplifier stage that 
produces the output signal. The signal used to heat the kiln 
produced this way is not continuos, but since the kiln has 
integrator behavior this does not affect the functioning.  
 

 
Fig. 10. Picture of the power module. 
 
 
The actual implementation of this module can be seen in 
figure 10 and a block diagram of the power module 
processing can be seen in figure 11. 
The operating range of the kiln under normal conditions is 
between 750ºC and 1000ºC. A picture of the kiln and 
electronics can be seen in figure 12. 
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Fig. 9.  Block diagram of the power module. 
 
 

VI. IDENTIFICATION 

Direct and inverse models were identified using 
Feedforward Neural Networks (FNNs) and Auto-
Regressive with eXogenous inputs (ARX) architectures.  
A sampling period of 30 seconds was used and because of 
the measurement noise all the data was filtered using a 
simple first order filter with multiple iterations. Care was 
taken to avoid phase distortion and to choose appropriate 
cut-off frequency. 
Training was performed off-line using the Levenberg-
Marquardt algorithm because of its fastest convergence. 
After identifying the order of system with the lipschit 
function [5] [9], different architectures regarding the hidden 
layer were tested and the best results were obtained using 
four neurons on the hidden layer of the direct model and 
five neurons on the inverse model. Both models have a 
linear output neuron and hyperbolic tangents as activation 
functions in the hidden layer. 
 

 
 
Fig. 12. Picture of the kiln and electronics. 
 
One common problem that arises during training is 
overtraining or overfitting. This corresponds to having the 
FNN modelling not only the features of the system but to an 
undesirable extent also the noise [9].  
The overtraining problem has been an open topic for 
discussion motivating the proposal of several techniques 
like Regularization [10], Early stopping [11] and pruning - 
Optimal Brain Damage [12] and Optimal Brain Surgeon 
[13]. In the present work both models were trained using 
early stopping. 
For more details on the implementation of the models 
please refer to [2], [3] or [7]. 
When the quality of the models was considered to be 
“good”, the models were used for inverse control 
simulation and later used in the control strategies presented 
in the next section. 
During the identification and control tasks the NNSYSID  
[5] and NNCTRL [6] toolboxes for MATLAB were used. 

 



VII. THE REAL TIME CONTROL ACTION 

In this section the results obtained with AFC and AIMC are 
presented and compared, some of the signals obtained are 
also analysed in order to extract conclusions about the way 
AIMC works. 
Figure 13 shows the results obtained with AFC. The 
existing controller used is a PI tuned manually (the 
parameters are Ki=0.5, Ti=0.5 and Kp=0.5) without 
particular optimisation. 

 
Fig. 13. Kiln temperature control using Additive 
Feedforward Control.   
 
In figure 14 the results obtained with AIMC are presented. 
The same existing controller is used up to sample 200, 
afterwards the existing controller is suppressed leaving the 
IMC loop to work alone. As it can be seen at this point 
there is no disturbance being caused by the removal of the 
existing controller. 
The removal of the existing controller could not be 
performed this easily with AFC since, as can be seen from 
the results presented in [2], the remaining loop would not 
be free of steady state error and could perform worst than 
the AFC. 
 

 
Fig. 14. Kiln temperature control using Additive Internal 
Model Control.  
 

To further investigate the quality of AIMC a different 
reference has been used to control the same system. The 
results obtained can be seen in figure 15. 
The proposal of a loop composed of two feedback loops 
might cause some disbelief and in order to establish how 
the two controllers work together figure 16 shows a detail 
of both control signal. Note however that the control signals 
are shown unscaled and that before being applied to the kiln 
they are added and limited to the power module range, 
which is 0 to 4V DC. 
The control signal coming from the neural network is 
plotted with a solid line, while the control signal coming 
from the PI controller is plotted with a dashed line. 
 

 
Fig. 15. Kiln temperature control using Additive Internal 
Model Control with a different reference.  
 
As it can be seen the contribution of the existing controller, 
being based on the error signal, is very small. After the 
200th sample the PI controller is removed. 
 

 
Fig. 16. Detail of the control signals produced by the two 
controllers. The solid line shows the signal produced by the 
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neural network controller and the dashed line shows the 
signal produced by the PI controller. 
 
In table 1 the results obtained are summarized in terms of 
Mean Square Error (MSE). 
 
 
CONTROL 
TYPE  

MSE  
200 SAMPLES 

MSE SAMPLES 
80 TO 200 

AFC (Fig.11) 6.70 1.56 
AIMC (Fig.12) 4.10 0.44 
AIMC (Fig.13) 3.70 0.87 
Table 1.  Mean Square Error for the examples presented. 

 
To complete the information presented in table 1, it can be 
added that the MSE obtained in the 100 samples after the 
removal of the existing controller is of 0.13, while in the 
previous 100 samples is 0.30. This additional information 
confirms that the existing controller is no longer needed. 
The results in table 1 show the advantage of AIMC over 
AFC while using the same model and the same reference: 

• An improvement of 39% over the 200 samples. 
• An improvement of 72% after the initial rising 

phase. 
 

VIII. CONCLUSIONS 

A new control strategy has been proposed based in two 
existing strategies: Additive Feedforward Control and 
Internal Model Control.  
The new control strategy, Additive Internal Model Control, 
is meant to be used in the same situations where AFC can 
be used: improving an existing but not satisfactory 
functioning controller, while extending the feature of 
replacing the existing controller since the remaining loop is 
a stable feedback IMC. 
The proposed strategy was tested in a kiln temperature 
control loop where the results presented confirm the 
advantage over AFC and the feature of replacing the 
existing controller.  
From the results presented, it can be stated that: 

• The AIMC control strategy shows an improvement 
of 39% using the same model and the same 
reference, over the 200 samples. 

• The two different references tested show the good 
performance of the AIMC loop. 

It should be noted that the functioning of this strategy is 
based in the fact that the two control loops feedback 
different signals. 
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