
Introduction
Let Γ be a simple closed Lyapunov curve dividing the complex planeC in two partsD+ andD− and
let α be a direct or an inverse shift onΓ, such thatα′ (t) 6= 0, t ∈ Γ andα′ ∈ Hµ (Γ). Thegeneralized
Hilbert boundary value problemconsists in finding a function

Φ+(z) = u(x, y) + iv(x, y) , z = x + iy ,

analytic in the domainD+, whose limit values of its real and imaginary parts belong toHµ(Γ) and
satisfy onΓ the condition

a(t)u(t) + b(t)u(α(t)) + c(t)v(t) + d(t)v(α(t)) = h(t) , (1)

which can be written in the form

Re{A(t)Φ+(t) + B(t)Φ+(α(t))} = h(t) , (2)

with A (t) = a (t)− ic (t) andB (t) = b (t)− id (t), wherea, b, c, d, h ∈ Hµ (Γ) are real functions.

This problem is a generalization of the (classical) Hilbert boundary value problem (obtained if
b (t) = d (t) ≡ 0) and was proposed by E. G. Khasabov and G. S. Litvinchuk [1]. In their papers
[1] and [2] the Noetherity conditions and the index formula of problem(1) with a direct or an inverse
Carleman shift of order2 (α (α (t)) ≡ t) on Γ were obtained. In what concerns the solvability theory,
it was only established for some particular cases of degeneracy of boundary condition(1) which are
reduced to the well known binomial boundary value problems of Hilbert and of Carleman type.

Preliminaries

Definition 1 A linear bounded operatorA ∈ L (X1, X2) is a Noetherian operator if

(i) imA = imA (i.e. A is a normally solvable).

(ii) The numbersα (A) = dim ker A andβ (A) = dim cokerA
(
cokerA = X2/imA

)
are finite.

The subspacesker A andcokerA are called thedefect subspacesof operatorA and the numbersα (A)

andβ (A) are called thedefect numbersof this operator.

Definition 2 The integerI (A) = indA = α (A)−β (A) is called the index of the Noetherian operator
A.

We also notice that an equation of the formAx = y is solvable if and only ifρ = β (A) solvability
conditions are fulfilled and, in that case it hasl = α (A) linearly independent solutions. The number
I = l − ρ is also called the index of the (Noether) equationAx = y. We say that the numbersl andρ

satisfy the Gakhov-Coburn formulas when

l = max (0, I) and ρ = max (0,−I) . (3)

The Noether theory of an operator consists in finding a Noetherity criterion for that operator and cal-
culating its index.

The solvability theory of an operator includes the calculation of its defect numbers, the construction
of bases for the defect subspaces, the problems of spectral theory, the determination of exact or ap-
proximate solutions for the corresponding equations and boundary value problems.

Definition 3 Let Γ be a simple closed smooth contour dividing the closed complex plane into the do-
mainsD+ (3 0) andD− (3 ∞). A factorization of a non-singular matrix functionG (t) relative to the
contourΓ is a representation ofG in the form

G (t) = G+ (t) Λ (t) G− (t)

whereG± (t) are the boundary values of matrix functionsG± (z), analytic and non-singular inD±,
satisfyingdet G± (z) 6= 0, respectively,Λ (t) = diag {tκ1, tκ2, . . . , tκn}, andκ1 ≥ κ2 ≥ . . . ≥ κn are
integers which we call partial indices ofG. Their sumκ1 +κ2 + . . .+κn = κ = IndΓ det G (t) is called
the total index ofG.

Let Γ be a simple oriented curve, a homeomorphismα : Γ → Γ is called ashift. A homeomorphismα
preserving (changing) the orientation onΓ is called adirect (inverse) shiftand sometimes is denoted
by α+ (α−).

Definition 4 A point τ ∈ Γ is called a periodic point of the shiftα with multiplicity k ≥ 1 (k ∈ N),
if αk (τ ) = τ and (fork > 1) αi (τ ) 6= τ for i ∈ {1, 2, ..., k − 1} whereαi (t) = α (αi−1 (t)) and we
agree thatα0 (t) ≡ t.

A periodic point with multiplicity one(k = 1) is called afixed point.

We denoteM (α, k) the set of periodic points of the shiftα with multiplicity k.

Definition 5 A shiftα satisfying the condition

αk (t) = t ∀t ∈ Γ , (4)

for somek ≥ 2, is called a Carleman shift. A shiftα satisfying the conditionM (α, k) 6= Γ, for all
k ∈ N is called a non-Carleman shift.

The least value ofk for which theCarleman condition(4) is fulfilled is called theorder of the shiftα.

Considering the particular caseΓ = >> = {t ∈ C : |t| = 1}we introduce the linear fractional Carleman
shift of order2 (α (α (t)) ≡ t) of the form

α (t) =
t− β

βt− 1
, t ∈ >> , β ∈ C\>> , (5)

which preserves or changes the orientation depending on|β| < 1 or |β| > 1, respectively. The shift
(5) admits the factorization

α (t) = α+ (t) tµα− (t) , (6)

whereα+ (t) = λ
(
βt− 1

)−1
, α− (t) = λ−1 (t− β) t−1 , λ =

√
1− |β|2 , µ = 1, if |β| < 1 and

α+ (t) = (iλ)−1 (t− β) , α− (t) = iλt
(
βt− 1

)−1
, λ =

√
|β|2 − 1 , µ = −1, if |β| > 1.

Noether theory of the generalized Hilbert
boundary value problem
In [1] and [2], E. G. Khasabov and G. S. Litvinchuk used an integral representation to obtain the
Noether theory of the generalized Hilbert boundary value problem(2) with a Carleman shift of order
2 (α (α (t)) ≡ t) onΓ (see also [5]). Here we use the functionνα defined in sections1.3− 1.6 of § 1 of
chapter2 of [4] and the results exposed there to obtain the Noether theory of problem(2) whenα is a
non-Carleman shift or a Carleman shift of any orderk ≥ 2.

We start by considering the case of a direct shiftα with a non-empty arbitrary set of periodic points
with multiplicity k ≥ 1 (i.e. for somek ≥ 1,M (α, k) 6= ∅).

Theorem 6 In the above conditions, the generalized Hilbert boundary value problem is Noetherian if

να (A,B) 6= 0 onΓ ,

and, in that case, the index formula for this problem is

I = −2

k
IndΓ να (A,B) + 1 .

We note that the case of a direct Carleman shift of any orderk ≥ 2 is included in the previous theorem.

It remains to consider the case of an inverse shift. In the general case of an inverse shiftα such thatα2

is a direct shift with a non-empty arbitrary set of fixed points which doesn’t include all the points of
the curveΓ, the Noether theory of the generalized Hilbert problem is given by the following

Theorem 7For a shift in the above conditions, the generalized Hilbert boundary value problem is
Noetherian if

να2

(
A (t)A (α (t)),B (α (t))B (t)

)
6= 0 sobreΓ ,

and, if this condition holds, the index of problem(2) is given by the formula

I = −IndΓ να2

(
A (t)A (α (t)),B (α (t))B (t)

)
+ 1 .

Solvability theory of the generalized Hilbert
boundary value problem
In this subsection we obtain the defect numbersl andρ of the generalized Hilbert boundary value
problem(2) when it is considered on the unit circle>> andα is a direct or an inverse linear fractional
Carleman shift of order2 (α (α (t)) ≡ t) of the form(5).

We start by introducing some identities which will be used in this section. Put

∆ (t) = A (t)A (α (t))− B (t)B (α (t)) ,

θ (t) = A (t)A (α (t))− B (t)B (α (t)) ,

V (t) = B (t)A (α (t))− B (t)A (α (t)) ,

It can be directly verified thatReV = 0, consequentlyV = iV0 comV0 função real(V0 = −iV ).

We observe that, using the notations introduced above, the Noetherity condition of problem(2) takes
the form∆ (t) 6= 0 if α = α+ andθ (t) 6= 0 if α = α−.

The case of a direct linear fractional Carleman shift
In this subsectionα is a direct linear fractional Carleman shift of order2 (α (α (t)) ≡ t) of the form
(5) (with |β| < 1), and we introduce the weighted shift operator(Uϕ) (t) = u (t) ϕ (α (t)), where
u (t) = −α+ (t) = −λ

(
βt− 1

)−1
(see(6)).

We start by observing that, ifΓ = >>, the study of the solvability theory of problem(2) can be reduced
to the study of the solvability theory of the singular integral operator with shift

T =
(A (t) I + u−1 (t)B (t) U

)
P+ −

(
tA (t)I + α (t) u−1 (t)B (t)U

)
P− , (7)

with P± = 1
2 (I ± S), whereS is theoperator of singular integrationandI is the identity operator.

On the other hand, asUS = SU , the solvability theory of operatorT can be obtained from the solv-
ability theory of the singular integral operator without shift

M = AP+ + BP− , with

A =

( A (t) u−1 (t)B (t)

u (t)B (α (t)) A (α (t))

)
andB =

( −tA (t) −α (t) u−1 (t)B (t)

−tu (t)B (α (t)) −α (t)A (α (t))

)
.

Hence, it is enough to study the solvability theory of operator

M̃ = P+ + CP− ,

with

C = A−1B =
1

∆ (t)

(
i 0

0 −i

)(
u−1 (t) 0

0 1

)
C0

(
1 0

0 u (t)

)(
0 1

1 0

)(
t 0

0 α (t)

)
, (8)

whereC0 =

(
V0 (t) iθ (t)

iθ (t) −V0 (α (t))

)
is an Hermitean matrix function with negative determinant. Then

by virtue of Theorem2 of [6] the partial indices of the matrix functionC0 arem (≥ 0) and−m.

Now, using(8), and taking into account the factorizationα (t) = α+ (t) tα− (t) (see(6)) and the iden-
tity u (t) = −α+ (t), we obtain that the partial indices of the matrix functionC are

κ1 = κ + m + 1 e κ2 = κ−m + 1 ,

where
κ =

1

2π

{
arg ∆ (t)

}
Γ

= IndΓ∆ (t) .

Finally, using Theorem2.10 of [3], we obtain the following result about the solvability theory of the
generalized Hilbert boundary value problem(2) with a direct linear fractional Carleman shift on>>.

Theorem 8 In the above conditions, the numbersl, of linearly independent solutions, andρ, of solv-
ability conditions of the generalized Hilbert boundary value problem(2) with a direct linear fractional
Carleman shift of order2 on>> are given by:

1. l = max (0, κ + 1) and ρ = max (0,−κ− 1) , if κ1 ≤ 0 or κ2 > 0,

2. l = dim ker T = κ1
2 = κ+m+1

2 and ρ = −κ+m−1
2 , if κ1 > 0, κ2 ≤ 0 andκ1 is even,

3. l =
[

κ1
2 + 1−ε

4

]
=

{
κ+m

2 , seε = 1
κ+m

2 + 1 , seε = −1
andρ =

{ −κ+m
2 − 1 , seε = 1

−κ+m
2 , seε = −1

, if κ1 > 0, κ2 ≤ 0

andκ1 is odd.

Now we present an example (see also [2], and [5], example23.1) of a generalized Hilbert boundary
value problem for which the Gakhov-Coburn formulas(3) are not always valid.

Example 9Let us consider the generalized Hilbert problem

Re
{
cos (kϕ) Φ+ (t)− i sin (kϕ) Φ+ (−t)

}
= h (t) , t = eiϕ ∈ >> , with k ∈ Z . (9)

In this case (see(2))

α (t) = −t , A (t) = cos (kϕ) = Ret−k , B (t) = −i sin (kϕ) = iImt−k

∆ (t) = (−1)k , θ (t) = (−1)k
t2k + t−2k

2
, V (t) = − (−1)k

t2k − t−2k

2
.

From this we conclude that problem(9) is Noetherian(∆ (t) 6= 0) and, asκ = Ind>>∆ (t) = 0, its index
is given byI = κ + 1 = 1. Besides, for this example, according to(8) and using the factorization of a
circulant matrix exposed in [7], p. 159, the matrix functionC comes

C = −1

2

(
1 1

1 −1

)(
t2k+1 0

0 t−2k+1

)(
1 −1

1 1

)
.

Hence, the partial indices of the matrix functionC are given by

κ1 = 2 |k| + 1 e κ2 = −2 |k| + 1 ,

Finally, using Proposition2.2 of [3] to compute the numberε, it comes that, ifk ≥ 0, ε = −1 and if
k < 0, ε = 1. Thus, by virtue of Theorem 8, we obtain

{
l = k + 1 and ρ = k , if k ≥ 0

l = −k and ρ = −k − 1 , if k < 0
.

The case of an inverse linear fractional Carleman shift
In what followsα is an inverse linear fractional Carleman shiftα of order2 (α (α (t)) ≡ t) of the form
(5) (with |β| > 1).

Now we consider the operatorU defined by(Uϕ) (t) = u (t) ϕ (α (t)), with u (t) = α− (t) t−1 = iλ
βt−1

(see(6)).

As we have seen in the previous subsection, the study of the solvability theory of problem(2) can be
reduced to the study of the solvability theory of operator(7).

Analogously to what happened in the case of a direct shift, now, asUS = −SU , the solvability theory
of operator(7) can be obtained from the solvability theory of the singular integral operator without
shift

M̃ = P+ + CP− ,

with

C = A−1B =
1

α (t) θ (t)

(
iα (t) u−1 (t) 0

0 −i

)
C0

(
0 1

1 0

)(
tu (t) 0

0 1

)
, (10)

where, andC0 =

(
V0 (t) i∆ (t)

i∆ (t) V0 (α (t))

)
is an Hermitean matrix function with negative determinant.

Now, by virtue of Theorem2 of [6] we have that the partial indices of the matrix functionC0 are
m (≥ 0) and−m.

Using the factorizationα (t) = α+ (t) t−1α− (t) and the fact thatu (t) = α− (t) t−1, from (10) we
conclude that the partial indices of the matrix functionC are

κ1 = κ + 1 + m and κ2 = κ + 1−m .

where

κ =
1

2π
{arg θ (t)}Γ = Ind>>θ (t) ,

Finally, by virtue of Theorem1 of section21 of [5] (p. 239), we obtain the following result on the
defect numbers of the generalized Hilbert boundary value problem(2).

Theorem 10In the above conditions, puttingI = indT = κ+1, the numbersl, of linearly independent
solutions, andρ, of solvability conditions of the generalized Hilbert boundary value problem(2) with
an inverse linear fractional Carleman shift of order2 of the form(5) on>> are given by:

1. l = max (0, I) and ρ = max (0,−I) , if κ1 ≤ 0 or κ2 > 0,

2. l = κ1
2 = κ+1+m

2 and ρ = −κ−1+m
2 , if κ1 > 0 andκ2 ≤ 0 andκ1 is even,

3. l = κ1−ε
2 = κ+1+m−ε

2 and ρ = −κ−1+m−ε
2 , if κ1 > 0 andκ2 ≤ 0 andκ1 is odd, whereε = ±1.

The previous theorem is also valid if we consider the shiftα (t) = 1
t . First of all we observe that this

is an inverse Carleman shift(α (α (t)) ≡ t) on>>, but it is not a particular case of a linear fractional
Carleman shift of the form(5). Afterwords, if together with this shift we consider the so calledflip
operatorU , defined by(Uϕ) (t) = 1

tϕ
(

1
t

)
it is easy to show that all the results obtained above for the

case of an inverse linear fractional Carleman shift of the form(5) remain valid in these conditions. In
fact, it is enough to replace, in the above procedure,u (t) for u (t) = t−1 and to observe that in this
case, asα (t) = t−1, we have thatα+ (t) = α− (t) = 1 (see(6)).

Finally we present an example (see also [2] and [5] (example23.2)) of the generalized Hilbert bound-
ary value problem with the shiftα (t) = 1

t , for which, in general, the defect numbersl andρ do not
fulfill the Gakhov-Coburn formulas(3).

Example 11We consider the generalized Hilbert boundary value problem

Re

{
t−k

[
u (t) + iv

(
1

t

)]}
= h (t) , t = eiϕ ∈ >> , with k ∈ Z . (11)

Now (see(2))

α (t) =
1

t
, A (t) = cos (kϕ) = Ret−k , B (t) = −i sin (kϕ) = iImt−k

θ (t) = 1 , ∆ (t) =
t2k + t−2k

2
, V (t) = −t2k − t−2k

2
.

In particular we observe that, asθ (t) = 1 6= 0, problem(11) is Noetherian. Besides,κ = Ind>>θ (t) = 0

so the index of this problem isI = κ + 1 = 1.

In this case, from(10) and using the factorization of a circulant matrix (see e.g. [7], p. 159), we obtain

C =
1

2

( −1 −1

1 −1

)(
t2k+1 0

0 t−2k+1

)( −1 1

−1 −1

)
.

Hence we conclude that the partial indices of the matrix functionC are:

κ1 = 2 |k| + 1 e κ2 = −2 |k| + 1 ,

It remains to obtain the numberε. Proceeding as in example 9 we obtain that, ifk ≥ 0, ε = −1 and if
k < 0, ε = 1. Thus, applying Theorem 10, we conclude that

(i) l = κ + 1 and ρ = κ , if k ≥ 0,

(ii) l = −k and ρ = −k − 1 , if k < 0.
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Abstract
In this work we study the Noether and the solvability theories of the generalized Hilbert boundary value problem.
Our main goal is to obtain the defect numbers of that problem with a direct or an inverse linear fractional Carleman shift of order2 (α (α (t)) ≡ t) on the unit circle>>. To this end we start

by reducing the mentioned problem to a singular integral operator with shift. Afterwords we use the well known fact that this operator can be reduced to a singular integral operator (without
shift) whose coefficients are matrix functions. Finally we compute the partial indices of such matrix functions (which, in this case, can be represented as a product of an Hermitean matrix
function with negative determinant by diagonal rational matrix functions) and use these results to obtain the defect numbers of the initial problem.

In what concerns the Noether theory of the generalized Hilbert boundary value problem, we obtain results in the cases of a non-Carleman shift or of a Carleman shift of arbitrary order.
We also give examples of this problem, with the direct Carleman shiftα (t) = −t and with the inverse Carleman shiftα (t) = 1

t , for which the Gakhov-Coburn formulas are not valid.
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